

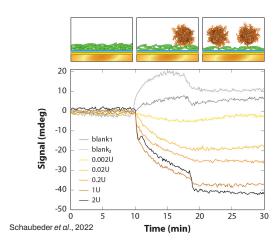
QUANTIFY REAL-TIME LABEL-FREE SURFACE INTERACTIONS!

Measure binding without water artifacts.

Biomaterial applications of MP-SPR

Multi-parametric surface plasmon resonance (MP-SPR) instruments offer powerful capabilities for studying biomaterials, such as real-time monitoring, quantitative analysis, high sensitivity, versatility, label-free detection, multimodal analysis and surface characterization. These features make MP-SPR a valuable tool for biomaterial research, aiding in the development of biomaterials for various biomedical and biotechnological applications.

KEY QUESTIONS MP-SPR CAN ANSWER IN RESEARCH OF BIOMATERIALS:

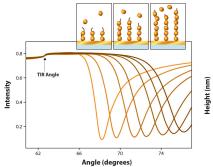

- → How does protein X interact with coating Y?
- When does the responsive coating change its conformation?
- How thick is the coating?
- Which coating offers best gas/moisture/antireflective barrier?
- How reproducible is the coating?
- → What is the release rate of drug X from material Y at pH Z?

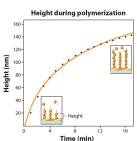
www.bionavis.com

WHY CHOOSE MP-SPR FOR BIOMATERIALS?

The most sensitive instrument for real-time adsorption kinetics on surfaces

Due to its plasmonic principle, MP-SPR is the most sensitive measurement for kinetics on surfaces. This is important in real-time measurements of adsorption kinetics, swelling and release.

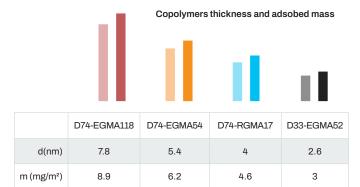



Measure also thick samples

MP-SPR can measure even 20 μ m thick samples. MP-SPR measurements can be performed at different pH, temperature (15 to 45 °C), electric potential and flow rate. The measurements do not require vacuum.

Thickness and refractive index solved simultaneously

Thanks to our multiwavelength configuration with scanning angular range of almost 40 degrees, MP-SPR is capable of acquiring enough information to solve thickness and refractive index of the layer simultaneously using LayerSolver™.



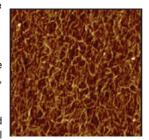
Emilsson et al., 2017

No water artifacts

MP-SPR is an optical method, and therefore provides desired measurement of adsorbed molecules without solvent in interfacial layers (dry mass).

Vuoriluoto et al., 2015

Swelling measured in situ in air and liquid


Thanks to its goniometric configuration, MP-SPR works in both. This allows measurements from dry to wet state with the same configuration. You can also characterize your coating in organic solvents by equipping the instrument with a high chemical resistant flow cell.

Cross-validation with microscopy and modelling is possible

MP-SPR with electrochemistry, fluorescence or another specialty flow cell allows for validation of measurements *in situ*.

Thanks to its oil-free operation, the same sample can be measured *ex situ* with AFM, SEM or other techniques.

Results from MP-SPR are absolute and therefore can be directly related to physical properties, validated by established theoretical models, and can be confirmed also analytically.

Further reading

AN#171 Thickness and refractive index calculation of transparent films

AN#165 Hormone capture from water using cellulose fiber based varn

AN#163 Characterization of Chitin film

AN#161 Polymerization kinetics

AN#159 Vapour induced changes in polymers

AN#158 Cellulose nanocrystals dispersibility

AN#150 Organophosphonates adsorption

AN#149 Polymer characterization - adsorption studies and layer thickness

Selected publications

Responsive polymer bruch interfaces (Anderson *et al.*, Langmuir, 2021)

Thickness and refractive index characterization by MP-SPR (Granqvist *et al.*, Langmuir, 2013)

Nanocellulose characterization and interfacial water expulsion (Vuoriluoto *et al.*, Journal of Physical Chemistry, 2015)

Monitoring of polymerization kinetics and morphology changes of brushes (Emilsson *et al.*, Applied Surface Science, 2017)

Enzymatic degradation of xylan films (Schaubeder *et al.*, Carbohydrate Polymers, 2022)